Chapter 2

Theoretical Background

In this chapter, it is briefly presented the basic concepts for helping to understand the
goals of this thesis. Firstly, it is presented the agent and MAS fundamentals, where the
main concepts about the openness of environments and systems are addressed. Then, it
is shown some of the technologies for the development of MAS; afterward, we present the
relation between middleware and the IoT focusing on the ContextNet middleware, which

will be used to provide connectivity and communicability in this thesis.

2.1 Agents and Multi-Agent Systems

Agents are intelligent entities coming from Artificial Intelligence that is capable of sensing
an environment where they are situated, and after a reasoning process, they are able of
acting upon the same environment in order to achieve common or conflicting goals. Agents
are autonomous entities capable of learning from their past experiences, interaction with
other agents, and perceiving the environment. They are also adaptable and flexible, being
capable of reacting pro-actively to changes within the environment they are situated. An
agent can be part of a system where it can interact in a peer-to-peer way with other
agents. Hence, a Multi-Agent System (MAS) is a system, which comprises several agents
competing or collaborating for achieving individual or collective system’s goals. Every
agent of a MAS are responsible for acting and sensing a sphere of influence, which is a
piece of the environment, and more than one agent can overlap this sphere, competing or

working together based on their individual or collective goals [131].

These characteristics of agents are often related to AmI and Ubiquitous systems since
they need intelligent, autonomous and pro-active entities capable of interacting and reason

in a highly dynamic ambient where persons and artifacts share information and cohabit

2.1 Agents and Multi-Agent Systems 11

pervasively [68]. As AmlI systems and ubiquitous computing consider systems built upon
real ambients using physical devices taking actions pervasively, agents must follow up
these characteristics. Agents can be virtual or physical entities [75]. A virtual agent runs
simulated on a computer using a virtual representation of an environment, and it does
not support an interface with physical devices or hardware. Conversely, a physical agent
interfaces with hardware devices such as actuators and sensors to interact with real-world
environments. It is embodied in physical infrastructure, and it can run embedded into
platforms, tiny computers, or any computational technology. A traditional vision of a

physical agent is a robot [103].

At this point, it is essential to define that both environments and ambients represent
a physical or simulated place where information and entities — artifacts, devices, persons,
etc. — can exchange messages, be perceived, handled and modified by entities present in
the local at a specific time. In Aml, Ubiquitous Computing, and Ambient Assisted Living
(AAL), for example, ambient is a physical representation of someplace such as a room or
house with expected behavior and equipped with pervasive technologies. It is not limited
to physical places, and simulated ambients are often used in many solutions |30, 67, 1,
72]. However, it is expected to materialize ambients and devices when adopting Aml
or Ubiquitous systems. When considering agents, the environment is a place containing
artifacts that can be perceived and used by agents or groups of agents in a MAS for helping
in accomplishing their goals. Depending on the cognitive model adopted by agents, the
artifacts’ data assume different names such as beliefs and percepts. Many domains use
agents as a programming abstraction, and simulated environments are not necessarily
used as a trustworthy representation of reality. In some cases, agents can interact directly
with the real world |75, 112, 66].

The open nature of a real ambient allows the entry and exit of entities at any time. It is
natural to think in a room where it is possible to enter or leave freely or to add new features
such as a television or a sound system. However, in these systems, environments can be
open or closed depending on their configuration and purpose [23|. An open environment
works as a real ambient allowing new artifacts and agents to enter or leave it in any
time. Conversely, a closed environment allows artifacts and agents that exist from the
beginning. This latter implies that the closed environment must be simulated since it
does not make sense that exists a real environment that is closed for new entities or, at
less, it is not useful. In this thesis, we consider an agent’s environment as an open and
physical environment that represents a real spot or place where exists agents that can

perceive and act upon this same environment controlling objects.

2.1 Agents and Multi-Agent Systems 12

The fact of existing open environments is related to the notion of MAS. If an open
environment exists where agents can enter and interact with other agents, sharing infor-
mation, and collaborating or competing, it is possible to consider that these agents are
part of a dynamic MAS. In this thesis, we employ MAS on top of objects, and only ob-
jects can enter or leave the environment, which avoids the existence of standalone agents
running freely in the environment. Hence, it is necessary to expand the discussion of

openness to the MAS level.

Similarly to environments, MAS can be closed or open, depending on how they treat
the mobility of their agents. The conventional approaches consider that agents established
in a MAS cannot move to another system, and it does not allow existing agents clsewhere
to enter in its system. Then, in a closed MAS, there is an architectural limitation that
avoids the mobility of agents. When considering the communication of these agents,
commonly the MAS also limits this interaction to agents that are part of the same system.
However, agents able to communicate with agents from different systems does not change
the openness of the system. If a MAS has open communicability, it does not mean that it
is prepared for the entry of new agents in the system. Instead, an open MAS allows agents
to enter or leave the system at runtime, and there are no limitations in communication
since they can perform direct communication in the destiny system, for example. Hence,
the openness of MAS is defined by mobile agents, which are capable of moving from one
system to another and stay as long it is interesting for them or until they accomplish their

expected goals [62].

However, in practice, it is hard to define a physical border for limiting agents inside
a MAS and programming languages are responsible for dealing with the relation agents
and system. In the same way, it is common to observe a MAS using hybrids approaches
considering agents, communication, and environments. In this thesis, we treat a MAS as a
closed system where particular types of agents can use abilities to communicate with other
agents from other systems hosted in IoT Objects. However, the technologies employed in
the development of our approach allows agents to be movable and systems to be open,

and it has been explored in parallel approaches [41, 38, 39].

As stated before, agents are intelligent entities capable of reasoning about statements
perceived from an environment and social relations to accomplish goals. For this, agents
adopt cognitive models of reasoning that tries to model their mental behavior. A cognitive
model tries to understand or scientifically explain basic cognitive processes involving the

brain in how to accomplish complex tasks as perceiving, learning, and decision making [16].

2.2 Development of MAS 13

There is extensive literature considering cognitive models in the agent domain, but one
is highlighted at this point since it is used in this thesis. The Belief-Desire-Intention
(BDI) [15] considers the cognitive process of practical reasoning based on beliefs, desire,
intentions, and plans. Agents can perceive the environment as pieces of information
named Beliefs, which are used for triggering desires and intentions of an agent. Plans and
actions materialize Desires and Intentions considering agents’ beliefs and goals, which
define when the agent commits to a desire, transforming it in intentions. The BDI has
been widely used in the development of MAS during the past years, including IoT and
Aml.

2.2 Development of MAS

During the last decades, agents emerged as a paradigm of Artificial Intelligence for solving
distributed and decentralized problems in different domains, including IoT recently. The
agent approach provides abstractions and mechanisms based on cognitive models that
facilitate the development of intelligent, pro-active, collaborative, and dynamic systems.
There are several AOPL and frameworks used in the development of MAS in the literature
using different reasoning models such as BDI or merely reactive agents, for example. The
Java programming language was used in the last years for creating three of the well-known

Java-based frameworks: Jade [7], Jack [19], and Jason [11].

Jade is a reactive framework where agents are developed in a Java-like style. Howe-
ver, there is an extension using the BDI model named Jadex [95] that runs over Jade.
The frameworks Jack and Jason use the BDI architecture alongside an interpreter of the
Procedural Reasoning System for providing real-time reasoning systems. Besides, Jason
works together with CArtAgO [98], which provides an abstraction of artifacts placed in
environments that agents can interact with and Moise |55, which presents an extension
for normative and organizational models in Jason. These three technologies together are

known as the JaCaMo [9] framework.

When considering applications for [oT and Aml systems using MAS, none of these
frameworks are prepared for interfacing hardware and communicate to an loT network.
Hence, if one of the mentioned frameworks would be employed in the development of
IoT Objects, interface mechanisms, or middleware should be necessary. The Jade itself
has been used in domains such as robotics and [oT but since its reactive nature and the

absence of a proper abstraction for implementing agents — agents are programmed in

2.3 Framework Jason 14

Java — it is not the most appropriated framework to be employed in autonomous and
intelligent IoT Objects, which is expected some cognitive behavior. Even Jadex, which
implements the BDI model, still depends on Jade since this extension runs on top of
Jade. The Jack framework is proprietary software, which makes it difficult to access the
source code or modify the agent’s reasoning cycle, for example. The frameworks Jason
or JaCaMo have a BDI reasoning cycle implemented in Java, and they are open and
free platforms. Besides, they have several points of extensions that can be explored for
creating agents with modified behaviors, and to add external technologies. Then, it is
essential to understand Jason’s internal structures that will be explored in this thesis for

creating Things and Smart Things.

2.3 Framework Jason

The Jason is a framework for developing MAS using the cognitive model BDI [15] and has
an interpreter for the BDI based agent-oriented programming language AgentSpeak [97|
in Java language. The BDI contains three basic constructions: beliefs, desires, and inten-
tions. Beliefs are information considered to be true by the agent, which can be internal,
acquired by a relationship with other agents or by the environment’s information. Desires
represent the agent’s motivation to perform a determined goal. Intentions are actions that
the agent is compromised to execute. Moreover, the Practical Reasoning System allows
agents to build a reasoning system at runtime to execute complex tasks [11]. Besides,
they have plans composed of actions that are activated depending on beliefs on their

belief bases.

Specifically, Jason’s standard agent has a reasoning cycle responsible for processing
all perceptions and beliefs to generate events, which activate plans and actions. It is im-
portant to understand the reasoning cycle of a standard agent because several extensions
(including the ones described in this thesis) modify some of its characteristics to enhance
specific kind of agents with new customized abilities. The reasoning cycle (Figure 2.1) of

a standard agent is composed of the following steps:

e Capturing Perceptions: The agent captures the perceptions from a simulated
environment where it is situated. In this environment, the agents can interact with
virtual objects that may have information represented as perceptions. In Jason,
the perceptions and beliefs are literals. It is important to remark that the original

distribution of Jason does not have any access to real environments using sensors

2.3 Framework Jason 15

or actuators.

e The Belief Update Function: This function updates the Belief Base using the
captured perceptions of the environment, beliefs received from messages, and self-
statements generated internally during plan execution. For each modification in the
Belief Base, an event is generated. An event represents a consequence of something

that an agent has to deal with to achieve its goals based on those new beliefs.

e Checking and Selecting Messages: The agent has a mailbox for receiving mes-
sages from other agents. It verifies at the beginning of each cycle if exists messages
to be read. Then, it can select socially acceptable messages to be processed or ignore

the one that is not acceptable. This step also generates events.

e Event Selection: In this step, an event is selected from a list of generated events

of the previous steps.

e Dealing with Plans: when an event is selected, it retrieves all the relevant plans
of the agent’s plan library. After that, a verification is performed to identify which
plans can be executed based on its current beliefs and perceptions, and a function

selects only one plan to be executed.

e Selecting Intentions: a function is responsible for choosing one ready-to-use in-

tention at a time to be executed.

e Executing Actions: Finally, an action of the selected plan is executed one at a

time.

The Jason does not have the necessary technologies for implementing IoT Objects
for working in IoT and Aml systems. It does not interface hardware, and it does not
communicate with different MAS. It is only possible to create MAS that accesses simulated
environments as said before, and the communicability is limited to agents inside the
created MAS. Hence, it is essential to adapt Jason for creating the IoT Objects. There is
an extension of Jason [90, 89] named ARGO that uses a serial hardware interface [63] for
transferring sensors’ values as perceptions directly for agents and receives agent’s actions
to activate actuators, which helps the creation of embedded MAS using microcontrollers.
This extension will be used in this thesis as part of the creation of IoT Objects and will

be explained in details in Chapter 5.1.

For applying IoT Objects controlled by agents in IoT, open environments are necessary

and, consequently, communicability and connectivity. In this case, middleware for IoT

2.4 Internet of Things 16

JASON

beliefs Belief beliefs
Base

BUF H BRF }_Fm THE] SE
evepts

selected
Events event

act
internal events
events

5 i relevant oy
external I
events Unify plans Check Exec.
Eve Int

Beliefs
to add Plan | __plans |

.send
and Library

selected messages
intention sendMsg
delete

means :
SI
update
intention
messages " intention

checkMail SM

actions

percepts

perceive

le=—,

Figure 2.1: The reasoning cycle of a Jason agent [11].

should play an essential role in dealing with these issues since some of them can guarantee
scalability, connectivity, communicability, data sharing, and protocols. In the next section,
it is explored the chosen middleware, which is the basis for creating the proposed Internet

of Smart Things (IoST) in this thesis.

2.4 Internet of Things

IoT middleware and protocols are responsible for managing the integration of the physical
world and the cybernetic ones by using IoT objects and establishing an interconnected IoT
network of these objects with the purpose of data collection and analysis, and reactive
applications and systems [85]. The increasing number of middleware and connectivity
protocols designed specifically for IoT do not consider the heterogeneity of such objects
and their needs. When combining agent approach and IoT middleware for providing an
[0ST, the former one needs to be autonomous and pro-active and independent from the
latter one. Besides, the IoT network should provide open environments where IoT Objects

embedded with agents can enter and leave anytime they want.

Hence, it is necessary an open, lightweight and secure middleware capable of dealing
with the heterogeneity of IoT Objects and agents technologies to be employed as the basis
of the IoST without bounding the IoT Objects to the system. Besides, it is important

to offer an IoT layer where different types of clients can access whenever it is necessary

2.5 ContextNet 17

without interfering in the IoT Objects functioning. In this thesis, we consider both IoT

Objects and Clients as being built over agent methodologies.

A cloud-based IoT architecture should provide the necessary abstraction for creating
an IoST capable of dealing with IoT Objects controlled by agents. Besides, it considers
an uncoupled three-layer architecture where an IoT middleware working as a middle layer
deals with connectivity and communicability of IoT Objects and clients. IoT Objects are
capable of connecting and disconnecting from it as part of the device layer, and clients
can interact or access these objects by accessing Application Programming Interfaces
(APT). Based on that, we selected the ContextNet middleware, which will provide all the
necessary abstractions and constructions for creating the ToST. In the next section, the

main concepts of ContextNet will be explained.

2.5 ContextNet

The ContexNet |47 middleware is a service for providing context data in stationary and
mobile networks. It provides context services for ubiquitous and pervasive applicati-
ons, and it has been employed in a wide range of solutions [36, 120, 49, 43]. It uses a
Scalable Data Distribution Layer (SDDL), which employs the Data Distribution Service
(DDS) [93] protocol for a real-time Publish/Subscribe mechanism for the communication
within the SDDL Core. Besides, it also uses the Mobile Reliable UDP (MR-UDP) [109|
for performing communication between mobile nodes and the core application running in
servers. There are other services provided by the SDDL core, such as data persistence,

data stream, fault tolerance, node disconnection, and group communication.

The data transferring occurs by using the MR-UDP and the Object Management
Group (OMG) DDS. The MR-UDP treats messages between a client and a gateway, and
the DDS is responsible for distributing data in the core of the network. The DDS is
an OMG standard built upon a peer-to-peer architecture for data distribution, which
guarantees Quality of Service (QoS) contracts between data users and providers. By
using ContextNet, it is possible to enable the growth of a network, ensuring the scalability
of the content distribution between millions of devices. From the point of view of the
[oT developer, the ContextNet middleware allows the development of clients and core
applications. Clients can be fixed or mobile devices able to connect to the server, and to
communicate with other clients and to the core application. It deals with the MR-UDP

connection to available gateways, and it isolates technical details from the application

2.5 ContextNet 18

layer. The core application deals with the data flow coming from clients, and it is useful
for creating solutions where it is essential to collect data from several different clients
and process this information somehow. In this thesis, the ContextNet middleware is
used in the cloud solution as the core application dealing with all the requests from IoT
Objects and other application that need to access to retrieve some action or act upon
some environment. It offers all the necessary constructions to allow the development of

the proposed architecture as the scalability, communicability, and connectivity.

Besides, the ContextNet also provides dynamic management for groups of clients.
Devices running the client library of ContextNet can be arranged in groups, which helps
to organize the collective goals and to facilitate communication since it uses broadcast
and multicast messages. It is a promising characteristic to be explored when considering
organizations of physical objects using MAS. However, in the scope of this thesis when
considering the agent approach, ContextNet is used to create a new type of agent able
to communicate with other entities, including other agents. This new agent will use a
client instance of ContextNet, and it will be responsible for all inbound and outbound
communications related to this MAS with other entities. As it is a ContextNet client, it
will be uniquely identified in the IoT network. Hence, when this agent is embedded in
Smart Things, it will identify this object uniquely in the network, providing the necessary

connectivity and communicability for them to interact in open environments.

The Mobile Hub extends the capability of communication in ContextNet by running
in mobile devices that adopt the Android operating system. It provides mobile commu-
nication and data processing extending the cloud SDDL middleware. It discovers nearby
objects enhanced with wireless technology for short distance as Bluetooth, BLE, and
NFC. As the Mobile Hub is a client from ContextNet, it is working as a bridge between
these objects and the core of ContextNet, opportunistically connecting to those objects to
transfer data to the cloud. Since Bluetooth has a distance range for objects to connect to
the mobile device, we decided to employ wired connections to sensors and actuators, and
we use embedded systems running ContextNet clients for managing these resources. In
this way, it is possible to create Things and Smart Things capable of controlling resources
that do not depend on distance since they are all connected in a single object. Besides,
it is possible to adopt cognitive ability and reasoning in the case of Smart Things, which

employs MAS.

