

ANÁLISE DE CONCENTRAÇÃO: INVESTIGANDO AS CONCEPÇÕES ALTERNATIVAS DOS ESTUDANTES

Miguel Tobias Bahia – migueltbahia@ifsc.edu.br

Instituto Federal de Santa Catarina, Departamento de Mecânica Rua Pavão, 1337, Costa e Silva

89220-200 – Joinville – Santa Catarina

Gabriel Langaro Ortega – gabriel.l.ortega@hotmail.com

Instituto Federal de Santa Catarina, Departamento de Mecânica

Rua Pavão, 1337, Costa e Silva

89220-200 - Joinville - Santa Catarina

Lucas Cortez da Silva Tapajoz de Arruda — <u>lucas.c.arruda@hotmail.com</u>

Instituto Federal de Santa Catarina, Departamento de Mecânica

Rua Pavão, 1337, Costa e Silva

89220-200 - Joinville - Santa Catarina

Resumo: Este trabalho implementa o algoritmo de análise de concentração (RAO & REDISH, 2006) que é um método para investigar as concepções alternativas ou modelos mentais dos estudantes. O algoritmo possibilita analisar globalmente o desempenho de uma classe de alunos, fornecendo dados sobre os modelos mentais que os mesmos compartilham. Parte-se da aplicação de um questionário de múltipla escolha já validado internacionalmente, o FCI (HESTENES, 1995), como ferramenta para avaliar o conhecimento dos estudantes em conceitos de física mecânica básica. A análise da concentração das respostas indica a preferência dos estudantes em relação a determinado modelo (científico ou intuitivo). Esta preferência é mensurando através de um fator de concentração que juntamente com a pontuação ou escore da classe permite analisar a consistência dos modelos mentais dos estudantes.

Palavras-chave: Análise de concentração, Aprendizagem, Concepções Alternativas, Modelos mentais.

1. INTRODUÇÃO

A construção de interpretações para os fenômenos do mundo físico envolve um processo complexo de interação sensorial que vai se consolidando gradualmente de acordo com o desenvolvimento cognitivo e a interação com o meio ambiente. Os conceitos assim adquiridos sem a intervenção escolar formam uma base para todas as interpretações de nosso meio e são comumente conhecidos como concepções alternativas, conceitos intuitivos ou espontâneos, entre outros. Na área da mecânica, várias pesquisas constataram a existência de concepções intuitivas para tópicos tais como força e movimento; trabalho, energia, velocidade, aceleração, gravidade, pressão, densidade, flutuação e afundamento.

Pesquisas como a de HEWSON *et. al.* (1999) apontam algumas características das concepções alternativas. Segundo os autores estas apresentam diferenças significativas em relação à concepção científica. Além disto, tais concepções são resistentes à mudança e concepções semelhantes podem ser encontradas em indivíduos de diferentes idades, estágios de escolarização e culturas.

As características das concepções alternativas podem ser justificadas pelo fato de que as mesmas baseiam-se na experiência sensorial individual, apresentam coerência com um conjunto de crenças e são dotadas de certa plausibilidade. A resistência a mudança conceitual encontra similaridade com os embates registrados na História da Ciência. Segundo PIAGET (1970) há um paralelismo entre o progresso realizado pela organização lógica e racional do conhecimento e o processo psicológico formativo correspondente. Outras pesquisas reforçam que as teorias científicas foram consolidadas mediante uma competição entre paradigmas rivais (KUHN; 1975).

O conhecimento das concepções alternativas dos alunos aponta para a necessidade de encontrar alternativas para desencadear uma mudança conceitual dos paradigmas pré-científicos dos alunos para os modelos científicos. Várias abordagens e modelos de mudança conceitual têm sido estudados. Segundo SANTOS (1991, p.178), os principais pontos de convergência desses modelos são:

- Necessidade de partir sempre do que o aluno já sabe;
- Necessidade de haver mudança conceitual;
- Necessidade de o aluno desempenhar um papel ativo em tal mudança, traçando os degraus do familiar para o novo.

Os modelos de mudança conceitual, de um modo geral, valorizam os esquemas prévios dos alunos e encontram suporte na Filosofia da Ciência, onde se destacam trabalhos como os de Kuhn, Popper, Bachelard e Lakatos.

Mais recentemente as pesquisas sobre concepções alternativas dos estudantes tem se direcionado para a busca de ferramentas mais sofisticadas de análise dos modelos mentais. Podem-se citar os trabalhos de RAO (1999), RAO & REDISH (2006) e FERNANDEZ (2011). No presente trabalho, o algoritmo de análise de concentração é implementado buscando facilitar a análise dos dados referentes aos modelos mentais dos estudantes. Este algoritmo fornece informações mais específicas que a análise estatística tradicional. Trata-se de uma primeira etapa para o desenvolvimento de uma análise ainda mais sofisticada conhecida como análise de modelos, já presente no trabalho de FERNANDEZ (2011).

Os testes de múltipla escolha podem ser utilizados para acessar as concepções alternativas ou modelos mentais dos estudantes. Tais testes devem ser formulados de um modo tal que a alternativa correta corresponda ao modelo cientificamente aceito e as demais alternativas representem os modelos intuitivos ou concepções alternativas dos estudantes. O FCI (*Force Concept Inventory*) (HESTENES; 1995) é um exemplo de teste que foi formulado na perspectiva de acessar os conhecimentos de física mecânica básica e concepções alternativas dos estudantes em relação à temática. Trata-se de um questionário reconhecido e validado internacionalmente e que foi adotado para auxiliar a realização deste trabalho.

2. ANÁLISE DE CONCENTRAÇÃO

Nesta seção introduz-se o fator de concentração, um valor que quantifica a preferência dos estudantes por determinada alternativa em um teste de múltipla escolha.

Na estatística tradicional, esta informação envolveria o desenvolvimento de um histograma para cada questão que se deseja analisar. Na abordagem aqui apresentada, o fator de concentração será analisado conjuntamente com a pontuação ou escore dos estudantes. Assim, pode-se acessar de forma simples e global a consistência das concepções dos estudantes, mensurando matematicamente a adoção de modelos científicos ou intuitivos.

Considere uma questão de múltipla escolha composta por m alternativas e respondida por N estudantes. Um vetor m-dimensional $\vec{r}_k = \begin{bmatrix} y_{k1} & y_{k2} & \cdots & y_{km} \end{bmatrix}$ representa a resposta do k-ésimo estudante, onde a componente i do vetor correspondente a resposta do estudante é $y_{ki} = 1$ e os demais componentes do vetor são nulas. Por exemplo, dada uma questão com 5 alternativas respondida por uma turma de 30 alunos. Se o estudante 3 tenha escolhido a alternativa 2 da respectiva questão, o vetor resposta correspondente ao estudante de número 3 será $\vec{r}_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$, ou seja

$$y_{3i} = \begin{cases} 1 \text{ para } i = 2\\ 0 \text{ para } i \neq 2 \end{cases}$$

A soma dos vetores resposta de todos os estudantes da turma fornece o vetor resposta total para a questão:

$$\vec{r} = \sum_{k=1}^{N} \vec{r}_k = \begin{bmatrix} n_1 & n_2 & \cdots & n_m \end{bmatrix}$$
 (1)

onde n_i é o número de estudantes que escolheram a alternativa i. Para o exemplo proposto, obtêm-se $\vec{r} = \sum_{k=1}^{30} \vec{r_k} = \begin{bmatrix} n_1 & n_2 & n_3 & n_4 & n_5 \end{bmatrix}$. Além disto, $\sum_{i=1}^m n_i = N$ e para o exemplo $\sum_{i=1}^5 n_i = 30$.

O módulo do vetor de resposta total $|\vec{r}|$, fornece informações sobre a magnitude da concentração das respostas. Assim, discriminam-se três possibilidades:

- todos os estudantes escolheram a mesma alternativa, ou seja, $|\vec{r}| = \sqrt{N^2} = N$;
- um igual número de estudantes escolheu cada uma das alternativas da respectiva questão. Portanto, $|\vec{r}| = \sqrt{m(\frac{N}{m})^2} = \frac{N}{\sqrt{m}};$
- situações intermediárias entre as duas possibilidades apresentadas acima. Neste caso, os valores de concentração encontram-se entre $\frac{N}{\sqrt{m}}$ e N.

Portanto, vale a desigualdade $\frac{N}{\sqrt{m}} \le |\vec{r}| \le N$. Definindo-se $r_0 = \frac{|\vec{r}|}{N}$, temos:

$$\frac{1}{\sqrt{m}} \, \diamondsuit r_0 \, \diamondsuit 1 \tag{2}$$

que pode ainda ser reescrito como:

$$0 \diamondsuit \left(\frac{\sqrt{m}}{\sqrt{m} \varkappa 1}\right) \left(r_0 \varkappa \frac{1}{\sqrt{m}}\right) \diamondsuit 1 \tag{3}$$

Denominando o termo central da desigualdade de fator de concentração C, obtémse:

$$0 \le C \le 1$$
, onde $C = \left(\frac{\sqrt{m}}{\sqrt{m}-1}\right) \left(r_0 - \frac{1}{\sqrt{m}}\right)$, e $r_0 = \frac{|\vec{r}|}{N}$ (4)

O fator de concentração C será utilizado neste trabalho para informar o quanto que as respostas dadas por uma classe de alunos a uma questão de múltipla escolha se concentram em determinada alternativa, considerando uma escala entre 0 e 1. A medida que o fator de concentração C se aproxima da unidade, maior é a concentração das respostas dos alunos em torno de determinada alternativa. Para esta avaliação obter maior robustez, o fator de concentração é analisado paralelamente à pontuação ou escore E obtido pela classe de alunos para a questão correspondente. Assim, obtém-se:

$$E = \frac{n}{N} \tag{5}$$

onde n é o número de acertos da turma para determinada questão e N é o número de alunos da classe. Tradicionalmente, a freqüência de escolhas das alternativas para cada questão permite a geração de um histograma, no qual podem ser modelados os seguintes comportamentos:

- amodais, histograma sem pico, ou seja, as respostas distribuem-se aleatoriamente entre as alternativas não indicando alguma preferência nas respostas;
- modais, as respostas concentram-se em uma determinada alternativa, o que fornece uma importante informação sobre as concepções dos alunos;
- bimodais, quando as respostas distribuem-se em duas alternativas e assim por diante.

Seguindo a proposta de BAO (1999), definem-se três níveis de escore e de fator de concentração para fins de análise: baixo (B), médio (M) e alto (A), que são apresentados na Tabela 1:

Escore	Nível	Fator de concentração	Nível
0 ~ 0,4	В	0 ~0,2	В
0,4 ~ 0,7	M	0,2 ~0,5	M
0.7 ~1.0	A	0.5 ~1.0	A

Tabela 1 – Níveis de Escore e Fatores de concentração (BAO, 1999)

O escore e o fator de concentração são dependentes um do outro e as seguintes combinações são factíveis:

- questões com baixo escore e baixa concentração (BB), quando os alunos fornecem respostas incorretas para determinada questão, e estas respostas não se concentram em determinada alternativa mas distribuem-se nas demais alternativas.
- questões com baixo escore e alta concentração (BA), quando os alunos concentram as respostas incorretas em determinada alternativa;
- alto escore e alta concentração (AA), quando ocorre grande número de acertos.

• situações intermediárias com baixo escore e média concentração (BM), médio escore e média concentração (MM) e médio escore e alta concentração (MA).

Obviamente, uma questão com alto escore e baixa concentração é impossível de existir, visto que o alto escore induz a uma alta concentração. O Gráfico 1 ilustra as possíveis regiões dos pares ordenados escore e fator de concentração.

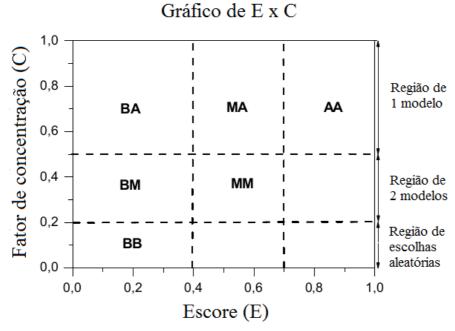


Gráfico 1 – Regiões de concentração dos pares ordenados (escore, fator de concentração). Adaptado de BAO (1999).

3. RESULTADOS OBTIDOS

Em um universo de 60 estudantes do primeiro ano do Ensino Médio foi aplicado o teste FCI, que mensura os conhecimentos de física mecânica básica. Trata-se de um questionário composto por 30 questões qualitativas e conceituais que não exigem cálculos, mas sim a interpretação de fenômenos físicos.

Os resultados da aplicação do algoritmo de análise de concentração estão ilustrados no Gráfico 2. O gráfico corresponde a um diagrama de dispersão, no qual cada marcador corresponde a um par ordenado (escore E; fator de concentração C) referente a cada questão do teste. Os dados mostram que as respostas dos estudantes ao questionário concentraram-se principalmente em duas regiões. A primeira região corresponde à adoção de dois modelos, com escores médios e fatores de concentração médios. A adoção de dois modelos revela outra característica interessante sobre as concepções alternativas ou modelos mentais dos estudantes. Quando uma questão é formulada dentro de um contexto típico dos problemas de física escolar, os estudantes costumam buscar explicações consistentes com o que o professor "ensina" em sala de aula. Por outro lado, quando a mesma questão (envolvendo os mesmos conceitos físicos) está contextualizada em uma situação cotidiana, o estudante costuma responder com a adoção de seus próprios modelos intuitivos, que muitas vezes conflitam com os modelos científicos.

O escore dos estudantes obteve resultados no nível médio conforme escala apresentada na tabela 1 (RAO; 1999). Tal desempenho sugere a necessidade dos professores de buscar novas abordagens para tratar os modelos científicos em sala de aula. Deve-se ressaltar que o teste FCI é bastante diferente das avaliações tradicionais da Física escolar. Esta diferença explica em parte a pontuação dos estudantes em um teste qualitativo como o FCI. De um modo geral, constata-se que os estudantes apresentam dificuldades para correlacionar situações do cotidiano com o conhecimento escolar.

Outra observação que pode ser extraída do Gráfico 2 é que muitas respostas se encontram em uma região de escolhas aleatórias. Nesta região não se pode identificar com clareza a adoção de um determinado modelo. Este resultado pode indicar inconsistência nos modelos mentais dos estudantes ou ainda que as questões foram respondidas adotando-se vários modelos, que são ativados conforme o contexto da pergunta.

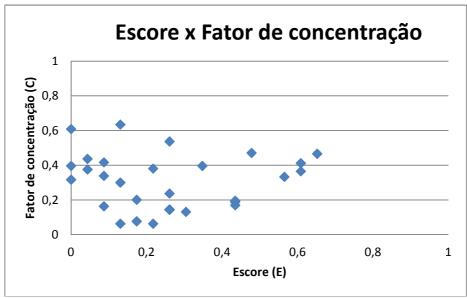


Gráfico 2 – Regiões de concentração obtidas para o questionário FCI aplicado em uma classe de 60 alunos.

4. CONSIDERAÇÕES FINAIS

A análise de concentração pode fornecer dados importantes na direção de um maior entendimento sobre a efetividade da aprendizagem em sala de aula. Além disto, tal análise pode auxiliar na compreensão do progresso dos estudantes no processo de aprendizagem, visto que a mudança conceitual ocorre a partir de mudanças na forma de utilização de seus modelos mentais.

A combinação de escores com os fatores de concentração permite mensurar de forma prática o quanto os modelos cientificamente aceitos estão sendo adotados pelos estudantes em suas interpretações do mundo físico. Trata-se de uma primeira etapa para uma análise mais sofisticada conhecida como análise de modelos mentais, já presente no trabalho de FERNANDEZ (2011).

A análise realizada neste trabalho pressupõe um trabalho posterior de intervenção escolar com estratégias pedagógicas voltadas para a mudança conceitual. Nesta

perspectiva, o conhecimento prévio do aluno e suas concepções pré-científicas, precisam ser analisadas com seriedade na construção de modelos mais consistentes.

Agradecimentos

Os autores agradecem ao Prof. David Koch, da Universidade do Estado do Arizona por permitir a utilização do FCI, ao apoio dado pela Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação do IFSC, aos professores do IFSC Campus Joinville que permitiram a aplicação dos questionários e ao CNPQ pela concessão de bolsas de iniciação científica.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BACHELARD, G. O novo espírito científico. Rio de Janeiro: Tempo Brasileiro, 2001.

BAO, L.; REDISH, E. F. Model analysis: Representing and assessing the dynamics of student learning, Physical Review Special Topics – Physics Education research. v. 2, 2006.

SANTOS, M. E. V. M. Mudança conceitual na sala de aula: um desafio pedagógico. Livros Horizonte, 1991, 260p.

FERNANDEZ, S. A. UNIVERSIDADE FEDERAL DE MINAS GERAIS. Um estudo sobre a consistência de modelos mentais sobre mecânica de estudantes de Ensino Médio. Belo Horizonte. 2011, 212p, il. Tese (Doutorado).

HESTENES, D., WELLS, M. & SWACKHAMER, G. Force Concept Inventory. The Physics Teacher, 1992, 30, 141-151.

HEWSON, P. W., TABACHINICK, B. R., ZEICHNER, K. M., BLOMKER, K. B., MEYER, H., LEMBERGER, J., MARION, R., PARK, H., TOOLIN, R. (1999). Educating prospective teachers of Biology: introduction and research methods. Science Education, v.83, p. 247-273.

KUHN, T. A estrutura das revoluções científicas. Ed. Perspectiva: São Paulo, 1975, 262 p.

LAKATOS, I. Falsification and the methodology of scientific research programmes. In.: I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge. Cambridge: Cambridge University Press, 1970.

PIAGET, J. Epistemologia Genética. Petrópolis: Vozes, 1970.

POPPER, K. R. Conjecturas e refutações. Ed. UNB Brasília, 1982.

GRAMADO - RS CONCENTRATION ANALYSIS: INVESTIGATING THE ALTERNATIVE CONCEPTIONS OF STUDENTS

Abstract: This paper implements the algorithm of concentration analysis (RAO & REDISH, 2006) which is a tool to help the teacher in the investigation of alternative conceptions or mental models of students. The algorithm allows analyzing the overall performance of a class of students, providing data on shared mental models. It starts with the applications of multiple choice questionnaire which is validated internationally, FCI (HESTENES, 1995), as a tool to assess the students knowledge in basic concepts of mechanical physics. The concentration analysis of the responses indicates the preference of students for a specific model (scientific or intuitive). This preference is measured through the concentration factor and the score class which allows analyzing the consistency of mental models of students.

Key-words: concentration analysis, learning, alternative conceptions, mental models.